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I. Introduction

For many problems associated with the field of ballistic
mechanics experinental methods required for model evaluation
are very difficult to control in practice and are, in addition,
very expensive to perform. Furthermore, it is very difficult,
if not impossible, to obtain time dependent information experi-
mentally on the state within solid materials. Thus, in many
instances it is imperative that one use a numerical model which
simulates the physical experiments to predict the required in-
formation,

The first step in the construction of the model is to define
the governing differential equations. A more difficult task is
to choose a numerical method which is used to replace the differ-
ential equations by a finite difference form; the resulting equat-
ions must be solved on a high speed digital computer. The main
features that one strives for in the design of a numerical model
are the attributes of accuracy, economy and ease of operation of
the code for the designer-user. High velocity impact phenomena
leads to very severe material distortions. The computer model
presented in this report has beer used to predict deformation
states for problems in which the striking velocity lies in the
range of 0.2-4.0 km/sec. For very much lower impact velocities
computation times may become extreme; there does not appear to be
a restriction on the method for higher impact velocities. As a
result of difficulties associated with Lagrange methods when large
distortions are present, it was felt that an Eulerian formulation
was desirable.

Eulerian codes are characterized by a mesh which is fixed in
space for all time; the material "flows" through this mesh. As
such the Eulerian method has the intrinsic capability of represent-
ing numerical solutions to problems with large deformations over
long periods of time without incurring the Lagrangian penalty of
mesh distortion. As a result of maintaining the uniformity of the
mesh the accuracy of the method is preserved and the need of opera-
tor intervention for rezoning the calculation is eliminated. 1In
this paper we shall describe the key elements of an Eulerian code
for ballistic problems which is second order accurate.

As is well known, and unless spacial care is taken, diffusion
of one material into another material can occur in an Eulerian for-
mulation. To prevent such diffusion between materizls all moving
surfaces which bound each domain are defined by material particles
(called tracer particles) that are taken to be the end points of
piecewise linear segments which approximate the boundary. These
particles can move freely throughout the fixed Eulerian mesh; their
motion is determined by ordinary differential equations. Although
a Lagrangian calculation is necessarily introduced, the usual re-
zoning difficulties associated with such a formulation are simply
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solved since the problem is reduced to the redistribution of mesh
points along a line which uses arc length as the independent vari-
able. On this string one need not conserve quantities when re-
zoning is performed; indeed rezoning just requires maintaining
uniform spacing of the particles. At free surfaces and interfaces
the correct boundary conditions are imposed with no integration
performed across boundaries separating materials,

The asymptotic accuracy of finite difference metnods is
measured by their order of accuracy. For a first order scheme
the error is halved when the mesh spacing is halved. For a sec-
ond order method halving the mesh spacing results in errors that
are one quarter their previous value. Numerous comput:itional ex-
periments have verified that the extra accuracy cssociated with
second order methods more than compensates for the additional work
required. This accuracy can be utilized in two ways. One can fix
the mesh spacings based on computer storage facilities and specific
problem resoiution requirements; the higher order methods will yield
greater accuracy. Alternatively, one can fix the accuracy desired.
In this case second order methods will need fewer zones compared to
first order methods. As a result of the dependence of the time step
on the mesh spacing, for explicit methods, less computer time is
required for the specified accuracy.

In addition to being second order, the code that has been de-
veloped, called SMITE, uses a dissipative scheme in divergence form;
hence shock waves imbedded within the flow region are treated auto-
matically and with the correct jump conditions. This result is ob-
tained because mass momentum and energy are conserved by the differ-
ence equations. Our model has been formulated in the cylindrical
coordinates (z,r).

o 2 , o il i s T
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II. General Modeling Considerations

The differential equations describing the behavior of a
continuous media involve both spatial and temporal derivatives
of material properties. In order to compute the rate of change
of certain of the variables one requires a knowledge of certain
spatial derivatives.

The accuracy of the temporal chanjes depends not only on the
accuracy of the difference scheme but also on the resolution of
the mesh in the nmighborhood of the regions of greatest variation
in the solution. Such regions where functions can vary very rapidly
on a length scale, which may be small compared to a characteristic
length in the region where the differential equations are solved,
is called a boundary layer.

It is obvious that imposing a fine mesh uniformly over the
region of integration, so as to represent the function numerically
by its values on the computational mesh, is an inefficient proce-~
dure. The fine grid spacing in the smooth region of the function
is unnecessarily accurate and leads to large computational times.

Let r=a be a line in a region where the function is slowly
varying while r=0 be a line in the boundary layer. Then the mesh
spacing at r=0 should be less than the spacing at r=a by a factor
d/a<l. One example used to achieve such spacing is a logarithmic
variation of the mesh given by

b+ (a-r)
B _ log{g—a=ry 1 X
E 2 ] - ——— ’ b = _‘H (2-1/
1 b+a 1--
og (g=3) a

Here L is a measure of the number of mesh points desired in
the r direction and d is the length scale over which the solution
exhibits its largest variation. The function B8(r) is the change
of variables such that 8 is monotonic and most rapidly increasing
in the thin boundary layer and more slowly increasing, with in-
creasing r, in the region where the solution is smooth. With a
suitable choice of B, such as the example (2.1), there will no
longer appear in the functions which are approximated cn the differ-
ence mesh, and which are considered to depend on the independent
variable 8, a boundary layer type of structure.

SMITE has, at present, a transformation for z which introduces
the new coordinate a through

a =D [z - geh(r)] ; (2.2)

-3~
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this transformation has been used primarily for modeling conical
shaped charges. The slope cf a cone in the physical plane is g
while h is used as a measure of the size of the cap at the vertex
of the cone. In all subsequent discussion q and h are chosen such
that o = Dz is the transformation with D a conversion for centi-
meters into coordinate lines, The choice of parameters used in
transformations (2.1) and (2.2) is described in Section VI.

The basic equations of hydrodynamics require, at each time
step, the evaluation of the divergence of the flux of the con-

served physical quantities, i.e. g%-and %% . Under the condition

of coordinate substitution mentioned above in which B=B(r), i.e.
Equation (2.1), the divergence of the flux becomes

dg _ 3g 3B _3f _ ?f 3a
9 = oy ¢ f.=9 "% 5%

We find that, in the cese of (2 1),

9 _ dB _ _ 2Lb 1
it dr log %;g bz-(a—r)2

which shows that the mesh spacing in cylindrical coordinates is
proportional to b2-(a"r)2. Hence, as r varies from zero to a the

mesh spacing varies from bz-az, the smallest variation to b2 which
is the largest variation.

The introduction of such coordinate transformations introduces
the concept of a computational plane (coordinates a-8) in which the
grid is uniform but whose image in the physical plane (coordinate
z-r) is dense in the boundary layer region and gets progressively
sparse in regions where gradients in the solution are small. This
results in economical use of the computing time.

Through application of the chain rule, it is possible to trans-
form the divergence free equations from the physical space z-r to
the computational plane a-8 in such a manner that the new equations
are still in divergence free form. A direct consequence is that
internal shocks will be computed with the correct jump conditions
in the computalional plane.

The difference schemes that we use to approximate the diver-
gence form of the differential equations requires a nine point
rectangular lattice on the initial data plane at time level, t.
Symmetrically placed about the point (i,j), at which we wish to find
the functions which constitute the solution, are eight nearest



neighbors whose position is defined by translations about (iAz, jaAr)
by t8z and tAr. Nine point stencils which are entirely inside the
domain of integration at time t are updated to time t+At on the
basis of a two step difference algorithm (see Section 4).

For mesh points near boundaries the nine point stencil required
by the two step method is no longer completely contained within the
domain of integration. In this case we no longer consider the di-
vergence form for the differential equations but instead solve a
quasilinear system of equations derived from the conservation equa-
tions for the unknown functions. The solution at these points is
updated by a non-linear version of the Lax-Wendroff method. This
method allows one to take into account in the difference equations
the non-centered spacing required as a result of the boundary cross-
ing between adjacent points of the stencil. This non-centering occurs
in the difference formulas since data along the boundary must now
be used instead of data at regular mesh points. As any of the eight
nearest neighbors can be excised from the stencil by the boundary,
there exists 256 possible ways of updating the solution at these
"irregular mesh points". Since many of these truncated stencils are
mirror images of each other, the required logic can be minimized.

In order to calculate the non-centered space differences to
the first and second derivatives, we must know the position of the
boundary together with the value of the dependent variables at all
crossings of the boundary with coordinate mesh lines. This is
accomplished by interpolation from the material particles defining
the boundary, care being taken to account for possible multiple
crossings of the boundary with a given coordinate line., Once all
spatial differences are known to second order the solution at time
t+At is calculated by a truncated Taylor Series for the unknown
vector function W(t+At) about time t, keeping all terms through
second order.

The moving boundaries consist of segments which satisfy either
free surface conditions or contact discontinuity conditions. In
addition, there may exist fixed boundaries some of which are lines
of symmetry; here we use the usual reflection conditions to advance
the solution. At such fixed boundaries the solution is reflected
across the boundary to image points which allow the use of regular
difference equations on the boundary. All surfaces, which move
through the Eulerian mesh, are marked by material particles which
obtain velocity components from the interior of the domain; their
motion is governed by Lagrangian equations which are integrated at
each time step to predict the new boundary position.

In the next sections we make a more detailed discussion of
the above general considerations.
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Basic Differential Equations

a) Axisymmetric Elastic Model

Hooke's law.

as follows.
as

| d _ 93,
at -

as

The two momentum
components Tij.

9T

+

ol @

mi<
+

When a material supports shear stresses, it is necessary to
include, in addition to the pressure forces, terms. which account
for the presence of these stresses.
such a material can be derived by applying the physical laws de-
scribing the conservation of mass, momentum and energy to a finite
element of the material body.
stress-strain relationship of the
paper a linear theory is assumed,
Then these laws may
partial diffcrential equations in
If the substantial or particle derivative is defined

The equations of motion for

In addition, a statement of the
material is required. For this
i,e, material bodies will satisfy
be usefully written as a set of

a cylindrical coordinate system,

) ]
2zt VT
then the conservation of mass can be written in terms of the density

(the mass per unit volume) p, and the divergence of the velocity
field, with components u and v in the z and r direction respectively,

(3.a.1)

Ri<

laws reflect the appearance of the stress

The axial momentum equation is

a3t T

OFE = gt + gl + 2 (3.a.2)
and the radial momentum equation is
9T aT Ty, T

p%% = a212 " 3r22 - 22r 33 (1.a.3)
{ The evolution equation for the internal energy, e, per unit
' volume is given by

de _ | ou Vv v u
| PIE = 11 3z T T22 3F T 12 5z * 37
f
! V(Ty1+T5,13p)
g S 2 (3.a.4)

r
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The stresses required in the above relations must be obtained
from the strains and strain rates. The linear stress-strain laws,
with correction for rotation, are usualiy written in terms of de-
viator stresses sij' The rate of change of the stress component

sij are given in terms of the strain rate, &.., via

ij

it L N SR R T (2u v, (3.a.5)
dt '% 32 3r T T12 9 ~ sz =i
ds Sy,-85

12 _ 3w, 3v, _ "11 "22 3u _ 3v
I “ulr t g 7 O - 57 (Bt 2.[6)
ds

22 _ 2 v Ju u v
ac — ~© (g =3z~ 7 =~ T12057 - 37 (3.a.7)
ds
R X R (3.a.8)

The above Hookian laws, Equations (3.a.5)-(3.a.8), are connected
to the evolution laws (3.a.l)-(3.a.4) by the algebraic conditions

Tij = Sij = psij dij =1 for i =73

= () otherwise (3.a.9-3.a,11)

The pressure p is related to the density p and specific in-
ternal energy e through the equation of state

p = P(p,e) (3.2.12)

The above set form a system of twelve ejuations for the twelve un-
knowns p,u,v,e,p,rll,rlz,122,T33,511,822 and S33u

At this point we show that Eguaticns (3.a.l)-(3.a.l2) focrm a
system which is not self consistent. 7o see this add Equations
(3.a.5), (3.a.7) and (3.a.8). It is clear then that the sum

3
z é.. satisfies
i=1 **

(S11 + S + 533) =0 (3.a.13)

i
gt 22

I T T i ki e, i




which implies that the sum of these stress deviators is a constant
of the motion of the material,; without loss of generality this
constant can be taken to be zer» for at t=0 each Sii=0. Thus

3
I s;,=0 (3.a2.14) !
i

for all time.

Now if we sum Equations (3.a.9) through (3.a.ll) for i=j, we
obtain the relation

1 + 1 + 1 =S

11 22 33 11 ¥ Spp * £33 = 3p  (3.a.15)

which yields, after satisfying Equation (3.a.l4),

Tip bt Ty * T = - 3p (3.a.16)

33

Equation (3.a.l16) states that the pressure p is determined by the
mean of the stress tensor. This is a contradiction of Equation
(3.a.12) which states the pressure is a function only of the density
and internal energy.

Hooke's laws can be written in the form

T, = 2ue,; + Agejj i=1,2,3 (3.a.17)

ti] ij

[}
N
R =
o

Here u is the shear modulus of the material, X is a Lamé constant
and the strain eij is defiued by
§.
ey = ’a';J (3.a.18)

N
u°1

The displacements are ii'

TP R R DTy Yo



Differentiating Equations (3.a.17) and (3.a.18) with respect
to time yields

T4 = 2ueii + Agejj
(3.a.19)

Tij = 2ueij

The corresponding strain rate tensor is then given in terms of the
velocity gradient,

ou, ou,
. _ 1 i
€y = 3 (F_xj * 33?1')
with uy and uj the components of the velocity.

If Equation (3.a.16) is differentiated with respect to time
we can compute p; using Equation (3.a.l19) for %ii we obtain:

B

= - 32%25 £, = - k div @
= - k(%% + %% + % (3.a.20)

We have defined the constant k, the bulk modulus, in terms of the
Lamé constants p and A.

Clearly Equation (3.a.20), obtained from Hooke's law is not
consistent with Equation (3.a.l12). In fact Equation (3.a.20) to-
gether with Equation (3.a.l) yields

-5

which can be integrated from the lower limit (p,p)=(0,p,) to the
. state (p,p); this yields for the pressure
p = kIn(l+y) , u = ‘;L -1 (3.a.21)
0
]
¥
[
-9_
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wilkinsl points out that Equation (3.a.21) can be expanded in a

Taylor series for p/powl to obtain a polynomial for p as a function
of u., Thus, Equation (3.a.l2) should, for consistency, be close to
Equation (3.a.2l) but obviously cannot in general be the same. To
be consistent then, there is really no degree of freedom in the
choice of the form for an equation of state Equation (3.a.12) in the
system (3.a.l)=-(3.a.12).

One possible way to avoid the above inconsistency is to re-
place the stresses Tij appearing in Equations (3.a.l)=-(3.a.4) by
the deviatoric stresseés Sij and the pressure p through the use of
Equations (3.a.9)-(3.a.l1ll) and then eliminate Equations (3.a.9)-
(3.a.11). The stress deviator S 3 can also be eliminated by using
Equation (3.a.l4). The resultina set of equations can be written as

) 9
L=+ g+ (3.a.22)
S S S
du _ _3p , 371l 9712 12
R = = T3 + 53 + T L (3.a.23)
S S 25,,+S
dv 3712 322 22 11
pIE™ = %% + o | ae=s = (3.a.24)
de ou Y
v(S,,+S,.,+p)
av , au, _ 'P117722"F)

+ S, (—z- + —r) = (3.a.25)
d———sll-gﬂ(za—“-a—‘i—l)+s (28 - Y, (3.a.26)
dat 3 9Z 9dr r 12 ‘3r P flat
ds S,.-

11 "22 A
t12 - u(g_g " a_:) - 3 (% - (3.a.27)
ds
22 _ 2 9V _ du _ v, _ au _ 3V
T - -3 257 -3z "0 T 512 Gy z) (3.a.28)
P = Plp,e) (3.a.29)

We now have eight equations for the eight unknowns p,u,v,e,
511'812’822 and p. Equations (3.a.22)-(3.a.29) are consistent.

The only disadvantage of this set of equations is that Hooke's

law of linear elasticity can not be recovered. This is due to the
fact that the pressure in Equation (3.a.29) is the thermodynamic
pressure while Hooke's law does not attempt to include thermo-
dynamic effects. If nonadiabatic terms are included so as to pro-
duce a modified Hooke's law then the relation (3.a.21) would be

~-10-
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modified to include temperature effects while the stress deviators
Sij would be unchanged. Hence the quantities Sij in Equations

(3.a2.22)-(3.a.29) are the stress deviators and an additional constant,
i.e. k in Equation (3.a.20) (in addition to the shear modulus ),
usually encountered in two dimensional linear elasticity, is elim-
inated by the inclusion of an equation of state (3.a.29).

b) A Pliatic Model

Equations (3.a.26)-(3.a.28) express the stress-strain rela-
tions for a material behaving with linear elastic properties. Be-
fore we proceed, we first rewrite these equations in a more convenient
%g to be a tensor operator unaffected
by rotations. Then, we construct this operator from the substantial
derivative of the stress deviators

form. We define the derivative

DS _ B o w2y,
bt dc 12 '9r ~ 9z
DS as S,,-8
12 12 11 ®22 ,9u dv
bt -3 T~z br- 5 (3.b.1)
P22 _ %22, o w3y
Dt dat 12 '3r ~ 9z

The time derivatives of the strain deviators can be written using
the definitions:

1 v
=5z "3zt y

2 29u_1l3v _1lv
3%z I %%t 3Ir (3.b.2)
. . 3V - 1 g! g! !
€3 "I Gz vty

o 1 u \'4
=7 G2+ 8D

Then, Equations (3.a.26)~-(3.a.28) can be written so that the
deviator stress components of the stress tensor are obtained from
the deviator strain components of the strain tensor, i.e.,

=11~

i b i i - b il .
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2 .
Bt = 2MEy, (3.b.3)

Equations (3.b.3) are applicable only in the elastic region of flow.
In general a material which exhibits a linear variation of strain
with stress is called linear elastic. However at the proportional
limit the strain may increase more rapidly with increasing stress.
In this region, the material deforms plastically. If the strain is
allowed to increase with no increase in the stress the material is
called perfectly plastic., If some variation in stress occurs the
material is experiencing work hardening.

A material when exposed to external loading can experience
permanent deformation as stresses exceed certain characteristic
limits of the material. A tacit assumption is made in_elastic
theory: the assumption that a scalar function f(rij,eij,w), called
a yield function, exists. Arguments Tij' e?j and w correspond to
the stress state, the plastic strain and a measure of the loading
history respectively.

The equation

f=0

represents a surface in stress space; for f <0 the change in plastic
deformation is zero while only when f=0 is plastic deformation
allowed to occur. If the material properties are independent of
strain rate, f>0 has no meaning. 1In the plastic region, in place of
System (3.b.3), we invoke the Prandtl-Reuss? formulation for plastic
flow.

In a mixed elastic plastic flow material, System (3.b.3) applies
whenever

2 2

ij
1<i, j<3

2 2

2
X ] = 2 (s11 + 522 + s11 s22 + 512) < 2K (3.b.4)

with K? a constant of the material. However, whenever the von Mises
yield condition, based on the assumed form for the yield function
f=f(£sij), requires that

2 2

ISi; 2 2K (3.b.5)

be satisfied, then System (3.b.3) is replaced by a viscoelastic
model system patented after a viscoelastic constitutive relation
of the form

-12-
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DS,
bt " M€y = A8),)

DSl2

DS
22
Bt - B (€ = ASy,)

Now the constant A is determined by requiring equality in the
von Mises yield criterion (3.b.5) rather than setting it to 1/2 ov,
Vv the kinematic viscosity of the material. Multiply each Equation
(3.b.6) by Sij and sum:

2
1 54 = 24 (CS. - azsl.) (3.b.7)
2 i3° 13 ij o

Now use the fact that Zsij = 2K2 = constant. Equation (3.b.7) can

then be solved explicitly for A,

_2' 814645 (3.b.8)
In cylindrical coordinates (3.b,8) can be expressed as

1
A K2 511 [?z = 1/3 Uy, t vt F{]

v
+5,, ["r =1/3 (u,, +v,. ¢ -f)]

s12 (ur i Vz) - (sll + 522) [— - 1/3 (u + vrr+ rﬂ

+

+
ur vz)

1
22 1511 Y2z Sa3 Ver * S1p ¢

(3.b.8')

v
(S1; + S3) ¢

Here we have used the notation %% =u, etc.

-13-
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In this way both the elastic and plastic regions can be de-
scribed by Equation (3.b.6). The prescription is

2 2 2

2 =
}:s1j < 2K or Zsij 2K and
Elastic (3.b.9%a)
A= zsijéijip (unloadirngqg)
2 _ .2
ZSij 2K
Plastic
L l L]
A = ;;5 Zsijeij>0 (3.b.9b)

Equations (3.b.%a) and (3.b.9b) show that, in the plastic
region, if one begins on the material yield surface, and in the
absence of unloading, then one remains on the yield surface.

Because of the complicated boundary conditions together with the
nonlinearities of Equations (3.b.9a) and (3.b.9b) this system must
be solved numerically. If one uses a finite difference technique
in the plastic region then the truncation errors inherent in any
difference scheme will result in a set of deviatoric stresses which
no longer lie on the yield surface. It is therefore necessary to
change the finite difference schemes in the plastic region to insure
that unloading does not occur due to truncation errors. Thus, A
in the numerical method will not strictly be determined by Equation
(3.b.9b) but instead the derivation of this formula will be used to
force the yield condition to be satisfied numerically.

In order to describe the method used, which is second order
accurate, we assume that a solution is known at time t and we wish to
determine the solution at time t+At. The solution to Equatlon (3.b. 10)
with A=0 (i.e. the elastic case) will be denoted by S . Then, by using
a backward Taylor Series in time one has i3

Slj(t) = Sij(t+At) - At Sij(t+At)

+ ‘—A§)— j(E40E) + E((at) %)

or

Slj (t+At) = S- '(t) + At Si] (t+At)

‘At) s (E40E) + d(at)?) (3.b.10)

-14-
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Using the differential Equation (3.b.6) in Equation (3.b.10) yields
5,4 (t48E) = 8, (£) + 20t [eij(um;)

2
- A(t+At)sij(t+At)]~ 2ul‘l§-L [éij (t+bt)

A (t+A1—.)sij (t+At)=) (t)sij (t)
e ]

(3.b.11)

Or introducing the elastic deviatoric stresses, Sij' Equation (3.b.1ll)
can be written as

e
Sij(t+At) = Sij(t+At) = 2Aty A(t+At) Sij(t+At)
+ Aty I:A(t+At)Sij (t+At) - A(t)sij(t](3.b.12)

Because all terms containing Sij(t+At) are linear, we may solve
directly for the predicted deviatoric stress at the advanced time
level via

= e N
sij(t+At) = G[Sij(t+At) Atuk(t)sij(t)] (3.b.13)

All terms on the right hand side of Equation (3.b.13) are known
except for a, We determine & by requiring the Sij(t+At) to lie on

the yield surface. As before we square Equation (3.b.13) and sum
over i and j. Then

23

2 2
= L, - +A = 0" ,a,
2K Sl,J(t t) ir5

e
S (t+b
i,3 [Sm“‘* &)
2
- (At)uk(t)sij(tﬂ

Solving for a we obtain

a = K

e 2
jl/zi§j [sij (t+bt)-Dtuh (8)S, (t{'

To sum up, the procedure for solving Equation (3.b.6) is
given by the following three step algorithm:

(3.b.14)

-15-
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i) Determine s:j(t+At) by solving Equation (3.b.6), by any
second order method, with A=Q,

ii) Test if ):Es‘i’j(ut\t)]z <2K%. If true, set
Sij(t+At) = Sfj(t+At) otherwise determine a from Equation (3.b.14).

iii) Finally solve for the deviatoric stresses at the advanced
time level using

sij(t+At) = Ot[Sij(t+At) - (At)uk(t)sij(t)] (3.b.15)

with

271 .
A= (2K°) I Smn(t)emn(t)

l1<m<3
1<n<3

c) Transformed Differential Equation

The partial differential equations described in section (3a),
Equations (3.a.22)-(3.a.28), can be written in quasilinear form, i.e,

w, + A v, + Bw_ + % Cw =0 (3.c.l)

t

r

-16~-
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ikl

whe

C=

In

If

we

& jull

re Tij = sij - pGij and finally

v 0 0 0 0 0 0
0 0 0 0 0 -1/0 0
0 0 0 0 -1/p 0 -2/p
0 Sll+522+p 0 0 0 0 0
0 0 2u, 0 0 0 0
0 0 0 0 0 0 0
0 0 oy 0 0 0 0

Equation (3.c.l) w is the seven vector

(3.c.2)
11

512

S22

one introduces a general transformuiion

a a{z,r) (3.c.3)

g B(z,r)

can, by the chain rule rewrite (3.c.l) in the g-3 plane:

W, + (Ra, + Ba ) w + (BB + AB)) W

t B

1 i}
* (a,p) 0 (3.c.4)

-18-




In order to solve the system (3.c.4) by the second order Lax-

Wendroff3 method, which uses a Taylor expansion for the solution
vector w(t+At) about the initial data w(t) via

I 3
w(t+it) = w(t) + At W + W, + o(At”) (3.c.5)

It is necessary to compute the second time derivative Weel the
first time derivative is obtained directly from (3.c.4).
It is sufficient to show how this is accomplished for a single
component of w, For example the equation for the density, from
Equation (3.c.l), is just
p

+ upz + vDr + Duz + Dvr + = 0 (3.c.6)

nl2

t

The counterpart of Equation (3.c.6), in the (a-B) plane is
just
Pp + Ploju, +a v, + BrvB + BzuB) + (ue, + vo )P,

t r

+ (vB, + uB )Py + &Yy = 0 (3.c.7)

Under the assumption that the coordinate system is independent of
time we may compute the second time derivative of the density from
Equation (3.c.7):

Peg =

pt(azua +a v, + BrVB + BzuB)

- fleu v, +Bvigt Bug)

- (o, +va)p, = ., (ua, + va ) (3.c.8)

(vtBr + uth)pB - (vBr + uBz)Dte

1 =
- E(a,e)(ptv + th) =0

Now the terms on the right hand side of Equation (3.c.8) can be
obtained from Equation (3.c.4) by taking the appropriate space
differential. For example the terms involving Pio (and ptB) are

evaluated by operating on the first (second) component of System

=19~
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(3.c.4) with the differential operators %E (%F). Cross deriva-

tives of the velocity components are evaluated by taking appropri-
ate space derivatives of the second and third components of the
System (3.c.4). In this way we find that only spatial derivatives
appear in the differential relation describing the second time deri-

vative of the density,

S T T & 22, (3.c.9)
Pet (55 ' 5% ¢ 3a2 * 3338 ' 3BV .C.

Here P is a second order differential operator acting on w,
In this manner all components of the vector Wy, may be computed.

In the present study we considered the class of transformations
to be restricted under the assumptions
az =1
8 =0 (3.c.10)
z
Thus B is associated only with r while o can depend on both r and z.
Equation (3.c.7) is then simplified:

pt = = (u + arv)pa - D(ua + arva)
(3.c.11)

pv
- Br(Dv6 + VDB) = “¥(a,B)

We now write down the remaining components of System (3.c.4)
under condition (3.c.10):

The axial momentum equation is used to obtain the rate of
change of the axial velocity through

= 1
Ut o (u * arV)ua ¥ E(Tll,a +ar512,a)
- B (vu, - ELELQ) & S1p (3.c.12)
r 8 P pr

The radial momentum equation is used to ol 1iin the rate of
change of the radial velocity via

_ 1
v, = (u + arv)vOl + p(sl2,a + arT22,a)
T2 25,,%51; RO
= B_(v-v. By +
r B P pr

-20-
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The rate of change of the specific internal energy is deter-
mined from

= - 1
e, (u + “r")ea + 5 [(Tll + “rslz)ua

+ (S12 + artzz)va] - Br veg (3.c.14)
1 9 VIP*S;;+8;5))
= a(rzzvB + slzuen I T —

The final three equations (3.c.15), (3.c.l6) and (3.c.1l7)
determine the rate of change of the deviatoric stresses Sll’ S12

and 522 respectively. The notation S11 corresponds to Szz, S12
to Szr and 822 to Srr:
S == (u+av)s + (4u + a_S,,)u
11,t x 11,a kI r°12'"a
= Lo 2H -
(815 *ap TIVy = B | V511, (3.c.15)
- 2 -y
535%.% 3 "e] 3T
S,,-S
- _CLl S22
le,t = (u + urv)slz,a & %r (M 2 )ua
5,,-S
11 Y22
Sl i A AR (VSIZ,B (3.c.16)
S,,=S .
11 22
eSS ”)“r;)
S == (u+ayv)sS - (2u + a_S,,)u
22,t r 22,a 3 r°12' %o
+ (S, + o A, (3.c.17)
12 r 3 o S0

4 2y v
- Br("szzs + S1oug - i}i"s) o

Equation (3.c¢.12) through (3.c.l1l7) are valid for R# 0. For
the special case of flow on the axis of symmetry, 8= 0, L'hospitals
rule when applied to the above system, Equations (3.c.ll)-(3.c.l7),

" yields

=21~
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Pe ™ = pu, - upOl - ZBr po (3.c.1lla)
u, = - uu., + lI + 28 s12 B

t a p1ll,a r __FL_ (3.c.l2a)
Vt =0 (3.c.l3a)
e, = ~ue. + X (T,.u +28.1..7,) (3.c.14a)
t o P 1l r 228 e

s = - us o AN e = B (3.c.15a)
11,t 11,0 3 rVB .
S15,¢ = 0 (3.c.16a)
s = - us - 20 - Bvy) (3.c.17a)
22,t 22,0 = 3(u, = Byvg «Ce

System (3.c.1ll) through (3.c.l17) together with (3.c.lla) through
(3.c.l7a) are_the differential equations solved in a strip of
thickness 3§nv/2A, A the spatial step size near the boundary of the
domain, This is shown in the figure below by the crosshatched area.

interpolation annulus

The thin annulus directly adjacent to the boundary is a region where
mesh points lie too close to the boundary. Since the stability of
the finite difference solution would not be satisfied in this region,
interpolation between the boundary data and interior data is used

to update the solution.

It now is appropriate to describe the form of the differential
equations used for the solution interior to the domain (the region I
in the above figure). Here we write the first four differential
equations in conservation form choosing the entries of the vector w
to be the quantities conserved across discontinuous transitions, i.e.,

-22-
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Here E is the sum of the specific internal and kinetic energy, the
total energy, E = p(e + 1/2(u‘ + v2)),

The continuity equation is

v
Py *+ (Pu), + (pv) + B =0 (3.c.18)
The axial momentum equation is
(pu), + (pu2 - T,,)_, + (puv - S.,)
t 117z 7 P 12'r
(puv=5,,)
$——22 = (3.c.19)
r
The radial momentum equation is
(pv), + (puv = 5,,)_ + (pv2 - 1,,)
t 1272 22'r
2
(pv©=258,,-5,,)
+ 22 3 -0 (3.c.20)

Conservation of energy requires that E satisfy

Et + [(E - rll)u - SlZV]z + EE - TZZ)V_512€|;-
. (E-122)v-512u
r

=0 (3.c.21)

The stress strain relationships are not relationships that
express a conservation principle., Hence they are rewritten here
in their quasilinear component form:

2 v
sll,t + usll,z + vsll,r + jp( 2uz + v, + =

+ S12 (vz-ur) =0 (3.c.22)
Slz,t + uSlz,z + vSlz'r = ulu, + Vz)
5117522

+ ——— (ur-vz) =0 (3.c.23)

Sa2,¢6 Y WSz, t VS, ¢t

-v.) =0 (3.c.24)

-23-
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The specification of the equation of state, Equation (3.a.29),
completes the system.

Along the axis of symmetry System (3.c.18) through (3.c.24)
are redefined by the application of L'hospital's rule. Hence in
z=-r coordinate along the line r=0, we obtain the system

Py + (Pu), + 2(pv) =0 (3.c.18a)
2

(DU)t + (pu” - Tn)z + 2(puv - Slz)r =0 (3.c.19a)

(DV)t =0, S11 + 2822 =0 (3.c.20a)

= 512“] L =0 (3.c.2la)
5130 * USyy  * v, - =0 (3.c.22a)
Slz,t =0 (3.c.23a)
Spp,¢ ¥ USy  * i, - v,) =0 (3.c.24a)

In a situation where the transformation to the a=-f8 plane is
the identity transformation, the System (3.c.18) through (3.c.24)
augmented on the line B= r = 0 with System (3.c.l18a) through (3.c.24a)
would be the complete set of interior equations to be solved.
However for transformations used in the present work (Equations
(3.c.3) subject to (3.c.10)) the conservation form for the equations
in the a-f plane become

(er)t + [rﬁ(pu + arpva P + (pv)B + %%; =0 (3.c.25)

(rBou)t + rB(pu2 -1t ar(puv - Slz)ﬂ -

puv-S12 _
+ {puv - 512 8 + ———— =0 (3.c.26)

rBr
| (erv)t + rB(puv - S12 + ar(pv2 = Tzz)a 5

2
pv -2322-511

2 =
+ (pv = 122)8 + TR =0 (3.c.27)

r

-24-
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(rBE)t + [%B ((E - rll)u - slzv + “r((E -122)v

= Sn“’i‘ ot [‘E = TV s 512“]8
(E=T5,)V=8;,u _

+
rr

0 (3.c.28)

The above four equations are augmented by the evolution equations
for the deviatoric stresses in the o-B plane, Equations (3.c.l1l5),
(3.c.16) and (3.c.l7).

Along the axis of symmetry, B=0, the above conservation laws
reduce to

(er)t + (reou)a + 2(pv)8= 0 (3.c.25a)

(rgeu)y + lrB("“2 - Tllaa
+ 2 (puv - 812)B= 0 (3.c.26a)
(erv)t =0 , 2822 + S11 =0 (3.c.27a)

(rBE)t + [rB((E - Tll)u{la + 2 [(E - T22) v

o slz‘ﬂe =0 (3.c.28a)

The deviatoric stress components completing System (3.c.25a)-(3.c.28a)
are determined by (3.c.l5a), (3.c.l6a) and (3.c.l7a).
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Iv. Finite Difference Equations

The partial differential equations described in Section III
have been written in both conservation form and quasilinear form
in the computational (a-8) plane. This is necessary since one set,
the conservation form, is used at all points which are interior
to the domain and contain all their eight nearest neighbors inter-
ior to the domain. The quasilinear form is used to construct the
difference scheme to be used at interior mesh points which have at
least one of the nearest neighbors exterior to the domain. We start
the discussion with the main difference scheme used, the two step
method for the conservation form of the defining partial differen-
tial equations,

a) Two Step Method

We wigh to solve the set of equations defined in the previous
section, Fquations (3.c.18)-(3.c.24), on a set of mesh points

ai = ila ’ i= O,l,...,I
Bj =jAg , 3 = 0,1,...,J (4.a.1)
t = nAt y L = 0,1,..-

n

For convenience we introduce the notation for the first four
equations (3.c.18-3.c.2l). Let f,g and h be four vectors defined by

pu ov
Z-T Puv=5
Pu=T1; 12
f = puv=-S = auz-T
12 v 9 22
(E-Tll)u-slzv (E-Tzz)v-slzu
and
pv
puv-S12
RE v-25,.-5 (4.a.2)
P 227°11 e

(E-Tzz)v-slzu
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Then with wT = (p,pu,pv, E) we have

1 3
w, + fz + g, + = h=2o0 r ¥ 0 {(4.a.3)

t
L + fz + (g+h)r = 0 r=20 (4.a.3a)

In the o=8 plane (4.a.3) becomes, after application of the chain
rule

h

w, +f +a_ g + B g, + =0
t a r ‘a r’g r(8)
or
n,
f h
(7 + (g=) +gg+gg=0 (4.a.4)
rt r a 8 & r

N
where £ = £ + arg.

Comparison of Equation (4.a.4) with the component forms,
Equations (3.c.22)-(3.c.28): give the individual entries for the

new flux vector f and g. For the remainder of the discussion we
drop the tilda on f£.

The approximate solution is called V;

_ h
V(ai,Bj,tn) =V,

13 & w(ai,Bj,tn) (4.a.5)

The approximate solution is written as a two step difference
equation. Predicted values V are first obtained at the midpoints

(@341/2785+1/
approximation. These values are then used to obtain a second order
accurate solution at regular mesh points., Letting A = At/Aa

and A, = At/AB the finite difference equation for the first step
is

2,t+nAt) of the mesh by a rirst order difference

2
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s n ” n-1 n-1 n-1 n-1
Vier/2, 34172 = Y4Wia1, 541 * Vied, 5 * Vi34 Y VLT
n=-1 fn-l + fn-l fn-l)

S V2G50, 54 T i, et EieT, 57 B1L5

1
3

n-1 n-1 n-1 n-
250954y, 541 = 9441,5 * 91,541 94,

n-1 n-1 n-1
1/48e(hi Ly 501 * Piad, 5 ¥ Py, 50

n=-1
+ hi,j)/r(8j+1/2)

(4.a.6a)

Introducing the notation ¥=f£(V) the second step is defined by

the finite difference equations

n _ n-1 _ n-1 _ c.n-1 n
Vi,g = Vi,j o VAAME 5t 501,35 t Ty, 54172

n n n
- Eio1/2,9+172 * Tisrs2,5-172 = Fi-172,5-1/2
n-1 n-1 -n
= 1/4r 095 541 T 94,5-1 ¥ Fi+1/2,541/2

=n B Eh : . =n )
9i+1/2,5-1/2 T 9i-1/2,3+1/2 T 9i-1/2,3-1/2

n-1 n-1 =N
- 1748ty Su + by 5ot V2040 54172

=n =n =n
* Rit172,5 ¥ Biciy2, 94172 * Pie1a, 17200 /78y
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Stability of the above difference scheme is achieved if an
artificial viscosity Q is added to the right hand side of
Equation (4.a.6b)

Q=K A1[ Yiel,3 T V4,30 Wiay, g = Vi,g) T tug mugab Yy

- A e - -
"i-l,j’]* 2["’1.j+1 Vi3l 4,501 7 Yy,

|V v I
Vi,9 T Vi, -1t Vi35 - Vi,j-lﬂ (4.a.7)

N L
where u and Tr are equal to a and 8 respectively (Equation (5.a.l').
The time step At is kept at approximately 2/3 of the maximum allow-
able CFL value, i.e., At = .65 Atpopy, « We compute the Courant-
Friedrichs-Lewey time step by fing]i::ng n,

n = max {(?‘; + /az +1C)/Az, ('\‘; + BrC)/Ar}

i3

over all mesh points. The maximum time step is then At.pp= 1/Dn.

Equations (3.c.22), (3.c.23) and (3.c.24) for the deviatoric
stress components are solved in an entirely analogous manner.

Now let QT = (Sn, 512' 522), s'r = (p,u,v,e,Sn, 512, 522), and
2 2
- g-uu UV UV
f = - uv H g = - yu : h= 0
' ' (4.2.8)
2
%ﬂu - %HV §UV
and define the matricies a and b as
0 0 Sl2 0 u 0 0
S,.=S
a = 0 o - 222 0 u o |(4.2.9)
0 0 -512 0 0 0 u
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and
0 =S, 0 0 v 0 0
b = 0 517522 o 0 0o v 0
3
0 S, 0 0 6 0 v

Then introduce two transform matrices. A and B given in terms of
aand b, A = a + (a+arb)/6r and B=b. In vector notation the form

used to generate the difference scheme, in terms of the above

matrices, with £ = (f + arg)/Br is just
—;‘l + + + + + p— =0 e
Br . fu gB Awa BwB rBr (4.2.10)

If the terms with coefficients in Equation (4.a.10) when put
into difference form are centered, the same two step algorithm
(4.a.6a) and (4.a.6b) results for the stress deviators w.

b) One Step Method

The basis fsr the one step algorithm is the method proposed by
Lax and Wendroff“, As stated in Section 3, a Taylor series is used
to determine the solution at time t+At from known initial data at
time t via

At2 3
w(t+Aat) = w(t) + At We + 5w + & (At7) (4.b.1)

tt

In the last section we described how the system of equations (3.c.ll)-
(3.c.17) is solved using (4.b.l). Reiterating briefly = one may
solve the system (4.b.l) because w_ is determined directly from the
differential equations. In order Eo evaluate the second time deri-
vative one differentiates these same equations with respect to time.
Two new cross derivatives appear - namely w and w,,; these latter
two are determined by directly differentiatgﬁg the gsme system
(3.c.11)=-(3.c.17) first with respect to o and then differentiating
with respect to B. Back substitution of these two cross derivatives

into the Wep equations leads to a differential form for (4.b.1l)

the right hand side of which is completely independent of deriva-
tives with respect to time.

We now plan to be quite specific. We will carry out all the
indicated differentiation in the a=g plane for Equation (4.b.l).

-30=-
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The time derivative of the continuity equation (3.c.ll) is
Peg = = W+ o VIpge = (Ug +0,vi)p, = Peluy + 2.v,)
+ V. Pp)- L (p.v + pv,.)
t"8 r t t

Observe the appearance of at and Bt cross derivatives, They will
be defined shortly.

The time derivative of the momentum equations (3.c.12) and
(3.c.13) are

Upy = - (u + arv)uat - (ut + arvt)ua
+ L T + a_S - 25(1 + a_S )
p 11,0t r-12,at P 11,a r'l2,a
s P
12,8t t
= - —LlPT
Br {%tue + vuBt 5 + ;: 512,;} (4.b.3)
P
1 t
* ot S12,¢ T 5 S12)
and
- ul 1
Ver = 7 (L7 arv)vat (ut a arvt)va s p [%IZ,at
Pe
torTa2,at T 5 12,0t arTZZ,aﬂ
T p (4.b.4)
- - 22,8t 't
Br( VeVg * VWt o 52 T22,8

Pe
¥ 51, T 58 Sy ))

1
+ p—r(2522,

The cross derivatives in space and time also appear in the above
two relations.
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The second time derivative of the internal energy is the
relative complicated expression

e = (u + arv)eat = (ut + arvt)ea

+

1
) [(Tll,t t0pS1g, 80t (Tpy A8 ouyy

(S12,¢ * %xT22,¢) Ve * (S1p + %7220V

p

€

T 5 Tyt aSyplug * (B ¥ “rtzz"’a’]
1 (4.b.5)

- By E’tee *vege = 5(T22,¢Y8 * 22Vt
Pe

S12,¢9 * S12%¢ T 7 (T22Ve t Slzus)ﬂ

1

55 |Ve (P * 8y * 8y ¥ VP + 8y ¢+ Sy )

P

- -p—' vip + Sll + 522)]

The term Py is evaluated by considering p=p(t) and e=e(t) in

ppt + Peet'

The second time derivative of the deviatoric stress is

Equation (3.a.29); hence Py = P

Sip,ee = - W H VIS e - (U +avdSyy

4
gt aSplu gy ta S, U

- (8, * oy %H-)vat ~ 81, Vo (4.b.6)

- Br(vtsll,s * V811,8t T S12,t%

- 2p - 2u
S12%¢ * 3 Vet) Ir Yt

-32=

iy o i i A Al AN a1t ot . : el et e




S12,6¢ = 7 (W 0, VI8)p ¢ = (U +0v)8), o
ar ar
Yoz (= 8y * Sylug - =3 5y,

e sZZ,t)ua +1/2 (2u + S11 - SZZ)VGt

+ vslz,Bt -1/2 (2u - sll + 522)“Bt

+1/2 (8 - szz,t)ué]

S22,tt Ll o‘rV)SZZ,ctt: = (ug + arvt)SZZ,a

2u _
(3= *+ 9pS1p)ug = 9.8y, (U, + (S,

(4.b.8)
4y _
Yor 3 0ae * S1p,¢Va T Br |VieSaa, 8t VS5, 8¢

N

v
- 4 -~ 20t
* 812,¢%8 * S1oUge ~ 3 vBt] 3 T

On the axis of symmetry, B=0, Equations (4.b.2)=(4.b.8)
become

Pee = T UPLE T UgPy T Pg Yy T AU

= 28, (pevg * oVgy) (4.b.2a)
u =-uw, -uu +31 (1 - EET )
o tt at ta P 1ll,at p "11,qa
N EEE . ) EE & , (4.b.3a)
P 12,gt  p 12,8
v =90 (4.b.4a)

tt

Foa et L5

-33=-

i b el s A o PR TR . - i tadn ik B ey el g




? .
g v - o .
- . - iy Q i

gy . N

1
at " Y8 o (T11,¢% * T11 U
ZBr
- (Taz2,ev8 * T22Yt (4.b.5a)

tt

11u ) +

122!

- - 4y .
S11,e¢ = 7 US11,at T UeS11,0 * T (Mae < Bpvgy) (4.b.6a)

S12,¢¢ =0 (4.b.7a)

N

& (2 - - £
= us u,_ S 3 (u

522:tt 22,at t ©22,a (4.b.8a)

at = BrVgt!

WWe must now compute the at and Bt cross derivatives which
appear in the right hand side of the Systems (4.b.2)-(4.b.8) and
{(4.b,2a)~(4.b.8a); first the at cross derivatives are computed
followed by the 8t derivatives.

The continuity equation yields for the cross derivative of the
density Pyt for g>0,

= - (u+ = % -
(utavip,, = 2 U, OpValPe = Pluy, o v )

- + + e Do
B pOl vB + pvaB vapB Vpaé] (4.b.9)
v, + PV
r
while on the axis of symmetry, R=0, the density satisfies

= = up - 2up - pu - ZBr(p v

+ . .
Pat aa o a oo a B pvaB) (153 32)

The cross derivative of the axial velocity uat for Bg>0, satisfies,

U = - (u + arv)uaa = (ua + a va) u
P
+ ;l; Ell,aa QS s p—a (111,04 * “rslz,a)]
- ("a“s ‘v, - 51 12,8 , 12;2%) (4.b.10)
+ % (ELELE _iz
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while for g=0 (4.b.10) becomes
u

- =l 1 - pa
at &7 Waa T Yl * ) (Tll,aa e Tll,a)
28 o] (4.b.10a)

X

o
* 2 812,08 = 7 S12,8

The cross derivative of the radial velocity Va ¢ for 8> 0, satisfies,
Vo =" (B H 0 VIV = (g + O V) vy

p

1 o
M [Slz,aa *orta,00 T 5 Bz,
T22,08
+ O.r’l'zz'uﬂ = Br (VaVB + WGB++ (4.b.11)
T p 28 +S
22,8% , “22,0%%11,0
' _p"i’_) e ——
(2522+511)°a)
Ip
while for 8=0 (4.b.ll) becomes
v =0 (4.b.11la)

at

The cross derivative of the internal energy et for B>0, satisfies,

|
= - + - Q
eat (u arv)eaa (ua + rva)ea

1
+ P [(Tll,a * arSIZ,a)ua + (Tll * arslz)uaa

(slz,a + 0‘r't22,oz)v0t u (512 + 0‘1:122)"o¢oz

0

o
- o ((Tll + arsl2)ua + (Sl2 + arTZZ)VOL)] (4.b.12)

1
- Pr VaeB + VeaB - 5(T22,av8 + TZZV(IB + slz,auB

p (p+Sy,+S,,)
a it 11*522
* S1gug) T 5 TV t Slz“a”] r[;a I
. (pa +Sll,a+522,a) _ Vpa(p+Sll+522)
0
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while for £=0 (4.b.12) becomes

Cat T T UG,y T Uyey ¢t é (Tll,aua * T11%a
a 28,
5 Tll“u) + _— ‘Tzz,ave (4.b.12a)
P
Y T22%8 "5 T22%8!

Again, the pressure derivative p, encountered above is treated in
precisely the same tashion as the derivative p, described earlier.
The cross derivative of the deviatoric stress §11 alt for B>0,

satisfies, Z

(u + a

== (u+auvs a rva)sll,a

511,at 11,00

4u
i’ (T- + Olrslz)uaa i Olrslz,aua

+ ar EE)V

3 - B (v .S

(8, aa 512,a%a = Br\VeS11,8
(4.b.13)
2u

* V511,08 " 512,a% T S12%e * T Vas

_2ula
3 r

while for 8=0 (4.b.13) becomes

- - 4p -
sll,at usll,cm uasll,a + 3 (Laa Srvae) (4.b.13a)
The cross derivative of the deviatoric stress S12 ok for 8>0,
satisfies, !
S12,at = = (W H VIS, 07 Uy YV IS,

a
a a
r . o
t 2 [2“ o S’22’] Yaa ~ 211,40

-5 )ua + 1/2(Sll - S + Zu)va

22,a 22 o
(4.b.14)

* /2000 0 T 522,00 T BrVeB12,8

+ vle,uB + 1/2(Sll - 522 - 2u)ua8

+1/2(8) - Szz,a)“e]
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while for =0 (4.b.1l4) becomes

82,0t = 0 (4.b.14a)

The cross derivative of the deviatoric stress 522 ol for B8>0,
satisfies, ’

$22,at = " (W * VI8 (ot (U, H VIS .

2 - 4
(3E + urslz)“au utSIZ,u“u + (512 + “r?g)vaa

(4.b.15)

* 512,a% " Br |VaS22,8 * V522,08 * S12,a%

4 2y Va
SlzuaB - 31 Vaé] - §E T

+

while for g=0 (4.b.l5) becomes
2
sZZ,at = - usZZ,aa - uQSZZ,G - EE(uaa BerB) (4'b-153)

Now we state the results for differentiation of System (4.b.2)-
(4.b.8) and (4.b.2a)-(4.b.8a) with respect to B.

The continuity equation yields for the cross derivative of the
density pet, for B>0,

Pgg ™ (B +avip g = lug +avelp, = pglu, +av)
- p(uaB + arvaB) - Br(ZvaB + poB + vaB)
r (4.b.16)
(B) glovg *+ Vo) = £ (pgv + v, - £ ov)
= lagdglve, + pve)
while on the axis of symmetry, R=0, (4.b.16) reduces to

pBt = - 2(Br)8 po (4.b.16a)
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Equation (4.b.16a) is not used since (Br)ﬂ-n.

The cross derivative of the axial velocity Uges for B8>0, satisfies

1
(U + aviugg = (ug + 0pvgiu, + 5 [Tll,aﬁ

uBt B -
P
* 512,08 75 11,0t “rslz,u’]
5 S p
- _ 12,88 12,878
Br (vﬁuB + vuBB 5 + Y ) (4.b.17)
] s S.., P
- _C12,8 1 "12,8 _ "12,"8
(Br)e(vue -—;L-) = ( 5 Y]
S, . r S
1278, _ _ J12,a
= Sk ) (“r)B (vua —'—p )
for B>0 while for B=0 (4.b.1l7) becomes
. = 20p.), 128 (4.b.17a)
Bt r'g o M

which is not used since u, as well as p, is an even function.

The cross derivative of the radial velocity Vaer for B>0, satisfies

v (u + o:rv)vmB - (u, + av,)v

Bt = ] r B’ a
+ l s + o T - ﬂﬁ (s + a1 )
o [°12,a8 r'22,08 o '°12,a r'22,a
1 T o}
- - 22,88 , 22,8 8 ) 4.b.18
Be ("B"B MY A ( )
28 +S
- _ T22,8 .1 “P22,87°11,8
(Be) glvvg sl TE 0
i (25,,+5;1) g i (25,,45)) )
p2 pr
122,q
- - =
(ag) glvv, = =548
_38-
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while for =0 (4.b.18) becomes
1
VBt " Wap * 5(S10,a8 * ©C1)g%22,0a)

T22,88 * 252288 * 511,83
p

= Bplvgvg = ) (4.b.18a)

The cross derivative of the internal energy egy’ >0, satisfies
the tedious relation

eBt = - (u + mrv)eclB - (uB + arvB)ea

+

1
o \(t11,8 * %S12,p 8 * Ty * S5l

(S12,8 + %pT2p,p)Vg * (815 + 0, T50)V g

&
5 (Tll + arSIZ)ua + (812 + arTZZ)vo:t]

1
By [Vees * vegs = 5lT22,8Y8 * T22Vgp (BERSLY)
p
+ le,BuB + Slz“sa - FE(TZZVB + SlZuB))]

1
= (IBJ_,)‘3 veg = F(TZZVB + 512“6’]

1

E' [VB (p + sll + 522) + V(pB + 511,8 + 52218)
g . 8

5 V(p + 597 +85,) - g~V (P + 8;; +5,,))

1
(qr)s vea - E(SlZua + TZZVa)]

which simplifies for g=0
ToaaV
= 2(p,) 22 (4.b.19a)

Again Equation (4.b.19a) is not used since e is an even function
around g=0.
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The cross derivative of the deviatoric stress S11 B!
for >0, satisfies '

o = - )S
S11,8t (u + @ V)S;) o = (ug *+ 6 vg'"11,0

-+

4u
(3= + 6,510 * ®rS12,8%

2u
(S, + %, $)Vep = S15,8% ~ B¢ (Vssll,e

+

2
V811,88 = S12,8%s T S12%s*T Vse) (4.b.20)

2
(Br)e(vsll,s - S t 3 Vs)

r v

2u 1 g
- EH t Vg = ) 7 g (Vsll,a
- 2y

Slzua + 3 va)

while for g=0 (4.b.20) becomes

- %u(sr) (4.b.20a)

S11,pt © 8 Vg

Again (4.b.20a) is not used.

The cross derivative of the deviatoric stress S12 Bt for
g>0, satisfies 4

S12,gt =7 (0 apVIS1p g 7 (Mg T VeSin
a, Oy
t o7 (2u = Syy *+ Spylugg m 3 (S1y,p 7 832,09
+1/2 (2u 4 81y = Syl * 1/2 (8,5 = 82,40
- 8, [vlezyB + VSlZ:BB - 1/2 (2u - 8§y, + Szz)uBB
*1/2 (849 4 - S22:B)u6] = (Bp)g (VSIZ,B (Y=kas)

1/2 (2u - §; + szz)ua - (og) g [815,

1/2 (2u - S11 + Szz)u;]

=40~
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while for f=0 (4.b.21) becomes

[ = - y$ + (u + Sll-szz)v
12,8t 12,aB — 2 'Vag

511781
+ (°‘r)e(“ - ==, (4.b.21a)

S, =S
_ ~ o Byt8o
By ["sslz,a (W _'i_’“ee]

Finally, the cross derjvative of the deviatoric stress 822 Bt
for 8>0, satisfies '

Spp,8e ™ = (U + ¥ V)Syy ap = (Ug + OpVp)SHs,a
2u
(3= + @, 8;5)uyg = %515 gUy + (8,

4u
oy 3) vag +515,0v - By ("sszz,s

+

4y
VSy,,88 T 512,898 * S12¥sp T T "BB) (4.b.22)

2l I
TE W V) - (Bpg (Vszz,e

m

1298 © 3 "B) - (o) ("Szz,a
4

*51% T3 va)

while for B=0 (4.b.22) becomes

21
SZZ,Bt = (Br)B T Vg (4.b.22a)

Again (4.b.22a) is not used since 522 is an even function about B8=0.

It is clear then that Equation (3.c.9) may now be generalized
to read

2 2 2
Wep = P(aa, 88, aaa 0 aaB’ BBB)w (4.b.23)
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Since Wee determined from Equation (4.b.23) is multiplied by

Atz upon substitution into Equation (4.b.l) it is only necessary to
evaluate the finite difference approximation of the spatial differ-
ential operator P to first order accuracy. It is precisely this
fact that allows us to use uncentered finite difference approxima-
tions to spatial derivatives of w and maintain the second order
accuracy of the overall scheme. Conversely it is precisely the lack
of a fixed regular stencil caused by the boundary of the domain
cutting the Eulerian mesh which leads to the relaxation of requiring
and attaining a second order approximation to the second space de-
rivatives.

Whenever thezappropriate neighbors are available the spatial
derivatives Ba, BGG,BS and 388 are approximated by centered differ-

ences which are second order accurate., For example, the component
u_ is approximated by

a
Yi41,37%4-1,4
2080
and u is approximated by
Yi+1,972,9 -1,
(Aa)?

and the error made through this approximation is of the order of
3
(Aa) ™,

Whenever the points (i+l,j) or (i-1l,j) are missing, these
formulas are replaced by noncentered formulas of second order accur-
acy. For example, if the point (i+l,j) is missing and the distance
between the point (i,j) and the boundary (along an & coordinate) is
a1>0 then u, is approximated by

Aa a,-8a o
Yy Nal(al+Aa) Ug i alAa ui,j = KETGi+KET ui—l,j (4.b.24)

while LI is approximated by

u . - u, :
B o _i,] i-1,73
Yoo 22 al(al+Aa) alAa + Aa(al+Aa) (4.b.25)

In these formulas, ug is the value of u at the boundary point B;

it is defined as the intersection of the boundary curve with the
line B=constant,
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Finally for derivatives 333 cen: :ring is not possible; how-

ever a first order approximation is sufficient. For example

Usys at point (ai,Bj) could be approximated by

i, T Yie1,9 . %4i,4-1 T Yi-1,4-1
a . ® Aa da
af AB

This formula assumes that the points (i,j), (i-1,j) and (i-1,j-1)
are the only interior points available., However, it is not necessary
to determine all the interior neighboring points.

In order to simplify the logic required in determing, at p01nt
(i,j), which interior neighboring points are available for use in
approximating derivatives by difference quotients, it is convenient
to partition the search procedure into two phases: a nearest neigh-
bor search for the four nearest neighbors followed by a search for
the four remaining neighboring points. Once one of “‘he latter points
is found it is used to find the approximation to u 8 in the double
Taylor expansion for u given by a

u(a + da, B + AB) = u(a,B) + Aaua + ABu8

1l 2 2
+ I(Aa L + 2AaAB uaB + AB uBB) (4.b.26)

During the first phase of the boundary search about the point where
u(a,B) is interior to the domain of integration u,, u and u
are computed., Once it is determined that u(a+da, +AB§ is gn 1nteg§or
point (here 4a,AB can be either positive or negative) u e is com-
puted from Equation (4.b.26).

c) Too Near Points

There are a set of interior points for which neither the two
step nor the one step difference operators can stably produce an
updated solution for the vector w. All such points lie within a
thin annular region whose boundaries are the boundary of the domain
and a boundary essentially parallel to the boundary of the domain
a distance on the order of one third Aa or AB. All points lying
within this band take values interpolated between interior and
boundary data.
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v. Treatment of the Boundary

a) Lagrangian Representation of the Boundary

The boundary of each domain is considered to be represented
by a polygon whose vertices are Lagrangian points moving with
the local material velocity. At each point i the differential
equations

a-t?- = ui ’ at—l = Vi i = 1,2,.-.,n (5.aol)

are solved for the coordinate pair (zi,ri) given the velocity

vector (3i) at the point i. In computational space, the a-8 plane,
i
Equation (5.a.l) becomes

dai
=\, + v,o
dt uio, Vi%e

i = l,2,...,n (S.a.l')

dBi
o = uifz * vib,

The values of velocity at each point on the boundary is known
at the initial time so that the new boundary position is computed
to be the polygon with vertices

a; (t+dt) = a;(t) + At(uj(t)a, + vjit)a,)

2z
(5.a.2)

Bj (t+At) Bi(t) + At(ui(t) Bz + vi(t)Br)

The updated values of the velocity components at the new
boundary position is obtained by a space-time extrapolation from
the interior. The data chosen for extrapolation to_ the kth tracer
particle is the nearest interior neighbor of the kth point with
coordinates (ak(t+At), ek(t+At)), i.e.

uy (g (L408), By (e+a)) = ulaf®p{t))

4=

k.



Gk o

where oy and Bj are chosen so that
2 2
(ak(t+At) - ai(t)) + ( Bk(t+At) - Bj(t))
is a minimum over all i and j; the values of i and j are mesh
crossings interior to the domain of interest.
It is possible to correct the boundary position using the

latest values of the velocity components by using the corrector
formula

ag (e+at) = a;(6) + 55 (@(e) + U(esar))
(5.a.3)
By (£+8t) = B; (1) + 55 (V(t) + V(t+ae))

where 3 and 3 are the transformed velocity components in the a=-B
plane; they are given by the right hand side of Equation (5.a.l').
It has been found that in the numerical experiments carried out thus
far, very little difference appears in the solution of the position
of the boundary. This is probably due to the fact that the time
step is very small being based upon the relatively high sound speed
found in elastic materials. On the other hand, boundary velocities
are usually much smaller than the characteristic sound speeds so
that, since the nearest neighbor is usually unchanged for the kt
boundary point, the formula (5.a.2) is sufficient.

The boundary is moved by the integration of the differential
equations (5.a.l'), the integrands being obtained by extrapolation
from interior data. As this boundary sweeps through the Eulerian
mesh data must be defined at points on the boundary which coincide
with the Eulerian mesh lines. This set of points is used to
augment the set of interior points when difference approximations
to partial derivatives in the alpha and beta direction are computed
(see Equations (4.b.24) and (4.b.25)).

b) Free Surface Boundary Conditions

The boundary of any domain is composed of segments which con-
stitute one side of a slip line, i.e., an interface, or a free
surface. In the later case, a purely hydrodynamic code only
requires the vanishing of the pressure,

p=20
as a boundary condition. However, for elastic domains, the pressure
is just one component of the stress, The proper condition is that
the normal stress must vanish:

Ta T 0 (5.b.1)
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In order to compute T, we let tany measure the local slope of
the boundary. Let fi represent the local unit normal vector to the
boundary {
siny |
A = (5.b.2) H
cosy

and € represent the local unit tangent to the boundary

n =-cosy
t = (5.b.3)
siny
Let the stress matrix T be given by
T T
r=| 11 12 (5.b.4)
12 22
Then the normal stress in the normal dir. ction is
TAR = 1 sinzw + 2t1,, siny cos
11 12 VRGOSl
2
+ T22 coSs w = 0 (5.b.5)
Here Tij = Sij = pdij.

Equation (5.b.5), for a hydrodynamic material reduces to p=0.
The tangential stress in the tangential direction
€€ = sinzl -2 siny cosy + cos2 (S.b.6)
111 v T12 y ¥ Tyo ] .b.
may be arbitrary.

In addition the tangential component of the normal stress
vanishes

TA-t = (122 = Tll)sinw cosy = rlz(coszw = sin2¢)
0 (5.b.7)
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Under conditions (3.b.5), (5.b.6) ana (5.b.7) we find that
111 = TE-E coszw

Typg = - Tt t siny cosy (5.b.8)

Ty = Ttet sinzw

are the desired values of the components of the stress tensor in
terms of the extrapolated values of the tensor T obtained from
the interior of the domain,

c) Interface Boundary Conditions

The conditions to be applied to the boundary at the interface
are simple generalizations of the three conditions described in
the above section,

First there is a kinematic condition which states that the
jump in the normal velocity at the interface vanishes, i.e.

W - u@ging + (v < v (P yeosy = 0 (5.c.1)

Here we have used superscripts to denote the material number on each
side of the interface. Condition (5.c.l) is just the algebraic
counterpart of the jump condition [u-n]) = 0 prescribed at the inter-
face.

A condition on the stress at the interface, is that [Tﬂ-ﬁ] =0

i.e.,
S(1)+ s(1) gl2), S(2)

( 22 11 p(l) _ -22 11 p(2))

s(_ g g(2)_ ¢(2)

22 1l 22 11

+ ( 5 - — )(coszw - sinzw) (5.c.2)

+ 2(5{2) - s{%) siny cosy = 0

~

A
In addition on each side of the interface Tn*t = 0, i.e.,
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(Ség) (1)) siny cosy - S{l)(cos v - sinzw)

=0 (5.c.3)
(s32)- {2y siny cosy - 5{2) (cos®y - siny)

=90 (5.c.4)

The quantity TR+n is computed from each side of the interface.
In order to assure that the normal velocity remains continuous we
introduce a new value of TA.\% in terms of these computed value via

(1) ~(2) (2) s, (1)
_ P TR«n Tnen
™R8 = Sy p(z) (5.c.5)

A value of Tn-f is formed via the welded boundary condition
assumption

e €)= 0. 242 210 e 4 02y (5.cl6)

The value of TE.tf is obtaln?? from t?s interior of each side
of the interface, i.e. both Tt-.t are extrapolated
along almost characteristic dlrectlons trom the corresponding

interior of each material.

We now have the fact that given Tn.n from Equation (5.c.5)
and Tn.tf from the welded boundary condition (5.c.6) as well as the

extrapolated values of Tt.f from each side one can compute the stress

components from the set of linear equations

Tnen + p = 2siny cosy S,, + sinzw §i; * coszw S2,
A oA - 2 - :
Tnet = - (cos™y - sin"y)5,, - siny cosy S,
- siny cosy S,
A A q 2 . 2
Ttet + p = ~ 2siny cosy S,, + cos™y S;, + sinTy S,,

The determinent of the above system is unity.
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By applying Kramer's rule we find
sll = Tnen sinzw + T€-€ coszw - 2Tn.f giny cosy + p (5.c.7)

81, = (8iny - cos?y) TA:£ + (Th:n - T€.f) siny cosy  (5.c.8)

822 = Tn-n coszw + 2Tn. £ siny cosy + T€-£ sinzw + p (5.c.9)

The condition on the normal velocity of the interface u, is
taken to be

u, = (e w1 4 0(2) 4(2)y 1) 0 (2))

while the tangential component u"(l), u”(z) are extrapolated from
the corresponding interior positions along almost characieristic
directions,

d) Characteristic Equations

We have carried out a formulation of the equations of motion
at interface boundaries in characteristic form. It is desirable
to formulate the difference problem on a coordinate system in which
the two coordinates are locally orthogonal and parallel to the
boundary. Since the boundary will exhibit a spatial variation in
slope which will change in time, it is convenient to recast the basic
differential equations in a form where differentiation is automatic-
ally carried out in a direction more or less normal and parallel to
the boundary. The corresponding difference scheme thus generated
can be aligned with the boundary - differences being taken perpendi-
cular and parallel to the boundary.

One first takes an appropriate linear combination of the
momentum equations and constitutive relations, i,e.,

s
Du 12
5t * Pz - (S11,2 * S1a2,r * T
25..+S
Dv 22 11
cang ["ﬁ t P T S13,, ¥ St T ):l

sing [ %511 _ 2,

Lno | __22 (2u_ - v_ - !)]
/373 Dt 3 4 r r

(5.d.1)
DS
_ cos 2g 12 _ ]
/u/p cose [ bt u(Ur ! Vz)
, sing Eizz_%g(z‘, - _x):I:o
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Then by introducing the definition of characteristic differentiation
in terms of the particle derivative via

4 - B v (Yot By v (Foom &
- ?ﬁ- + (u + (}’-)ls/izne ) 5_ + (v + (%lc/ozse) 5=

(5.d.2)

Equation (5.d.l1) can be written as

sin20 [9511 _ 95207 cos20 9512

3t Y cosh - Qe sinﬂ -
dt j——7- dc - " & |” \/__7_ at_
2

/u7ng (u sin® - v cosf) + HE (Sll cosze + 522 sin“e

p-2 §,, 8ing cosB) + % (8,5 cos6 - (ZS22 + 8;,) sine)

(5.d.3)

This is the characteristic equaticn.,along the conoid with the local
disturbances propagate with speed C_ = p/0 . the shear speed, rela-
tive to the particle speed. The anéle 6 1s measured from the image
of the characteristic on the plane t=0 from the r axis and the
directional derivative 4/df, defined in the plane t=0 and directed
tangent to the base of the conoid, is defined by

q 2
= sind T (5.d.4)

A
]
o]
[e]
w
@
wiw

In addition to the shear conoid, there appears another
characteristic cone defined from the characteristic speed

02 = C2 + 4u/3p, C being the sc .. 3 speed. Obviously, disturbances

which propaga“e at speed C, relative vo the material particle speed
will travel further in time At thar ‘an disturbances which travel
at the shear speed C.. Hence, for wave motion in an elastic medium,
the shear conoid lies inside the sonic conoid.

In order to find the characteristic equations along the sonic
cone we again take linear combinations of the continuity and momentum
equations, compatability equations and the particle path equation
which relates changes in pressure to density on a particle. The re-
sult is

=50~




v line
E+p(uz+vr+5 /1"‘ a-—+pz

3pC
cosd dv
(511,2 * S12,x ¥ _r )| + Tyt 'Li3pc E’a? * Py

25,, + 8
22 " °11 1 [op _ 2 ge]
(512,2 + s22,1: N )] i gz [b% Dt

. DS
_ sin 29[ L 2y - v, - p] (5.d.5)
C

DS

DS
12 cos 20 I: 22
pE .~ W ¥ "z’] - == 13

- 28ing cosg [
C

c?

%n(zvr-uz-yf)]so

Equation (5.d.5) can, after a fair amount of algebraic
manipulation is performed, be put into the characteristic form

pC 1+—L2- [a—sme— 2cose]+g%

2 951, . as,, 2 955,

-sinea-t—-ZsJ.ne coseaE—-cosea-t—

(%-E - pC2) g-g- [u cosp - v sine] (5.4.6)

/ 4p d . _
c/1l + 3 /) a-E (sing coso (Sl1 322)
pC
2 .2 4u .
(cos®“e - sin“g) S,.) +\(C/ 1 + S sing
12 3pC2 12

(2 s22 + Sll)cose] + (%E - pCz)V /r

+

+

+

We have used the following definitions in Equation (5.d.6).
The derivative in the bicharacteristic direction is

g—E = /1 + —-L (.3_. sing + %— cosg) (5.d.7)

3pC

SI“
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while the material particle derivative is given by

gE = %E +u %; + v %F (5.4.0)

As before Equation (5.d4.4) def. . the directional derivative
d/d¢{ which is used in Equation (5.d.

The method of computation is straight forward; the derivatives
appearing in the above equations are replaced by differences in
the direction in which the derivatives were defined. For example,
Equation (5.d.3) can be written in finite difference form as

p iDL (coge (D) w1 - gipe (1) (1),

-2 sinel(l) cosel(l)(S{i) S(l))
- 2, (1) _ < 2, (1), (1)
(cos“8, 8in®0,'"") 8,5 (5.d.9)

=/po(1)u(1) (cos0, M) u(0) _ ging (1) ,(0),

- 2 sino; ) cose, (1) (s{D) - 5§D

- (coszel(l) - sinzel(l))S{g)

+ At. (difference approximations to the RHS of
Equation (5.d4.3))

The differencing is along a generatrix of the shear cone and
along a line perpendicular to the generatrix in the z=-r plane,
This point of intersection is denoted by the superscript zero while
the vertex of the shear cone is denoted oy superscript one. The
subscript one denotes the particular angle theta chosen to define
the ray for the integration; the superscript on the angle 6 denotes
the material number. Equation (5.d4.9) as it now stands has been
written on one side of the interface and therefore a similar relation
must be written for the other side. Thus, whenever we have a term

ol(l) it is replaced by 9(2) é?) is replaced by péz), u(l)
replaced by p(z)and u(l) and v ) are understood to be the velocity
components at the vertex oizthe conoid on the other side of the

interface, i.e. and v This gives us a second algebraic

equation regfesentlng integration along the shear coneto the inter-~
fac= from e second material.

is
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The same procedure is now applied to Equation (5.d.6) with the
exception that two angles along the dialatational conoid are chosen.
In general these angles are distinct from those chosen for the shear
conoid. This gives us four more algebraic relations for the twelve

unknowns u(l). v(l), p(l), S{i). S{g), Séé) and u(z)o V(z)r P(z),

(2) (2) (2)
S11'v 83270 8337

One now looks at the basic stress strain relations which include
the terms accounting for rotation:

. _ 4
511,t (W 81y, ¥ 512V, = Ty,

- WSy s, u vy - EY (s.4.100
Byoge =T (L 8o 5 = (M # Ell;fzg’ Va

- vs, - (- 5155533) u) (5.d.10b)
Ba2,e == W Bpaip = Bl Vg ¥ £,

= v 8yp o * 8pp up - vy - BY O (5.4.100)

If we neglect these rotation terms and multiply Equation
(5.4.10a) and Equation (5.d4.10c) by 3/2 they may be added to
obtain

3% (51, + Syp) =ulu, +v, - 2 (5.d.11)

Equation (5.4.10b) may now be added and subtracted to Equation
(5.d.11) to yield

(3 o v 2 S12] = [Gzrdpwzw- z]s.aa2

Equation (5.d.12) has a directional derivative, gf' defined

along the particle path while the right hand side is expressed in
terms of a fixed directional derivative, i.e. fixed along the
directions + 45 degrees. Integration of Equation (5.d.12) along
the particle path on each side of the interface gives us two more
independent algebraic relations for the twelve unknowns. The
remaining four relations are obtained from the boundary conditions,

=53=

R PER A o b M e A 12




i s R s ——

3

If the slope of the interface is tany = dz/dr then the con-
tinuity of normal velocity ylelds

@ - ul@) giny & (v - () cogy = 0 (5.d.13)

The remaining conditions are obtained from constraints on
the stress tensor T:

T (5.4.14)

Let n = (2;2$) be the unit normal to the interface with slope
tany; therefore the unit tangent is t = -:g:£ « Continuity of
the normal stress, [Tnen] = 0 yields our -second boundary condition,
Equation (5.c.2).

The remaining two conditions can bhe obtained by placing a con-
dition on the components of the normal stress, Xp% in the tangential
direction, t. We again invoxed the condition Tn:t = 0 on side 1

and side 2.

Hence

-(S{i)- bzé) siny cosy - S(l)(cos Y - sin w) =0 (5.d.15)
~(s;2)- s{2)) siny cosv - 52 (cos?¥ - siny) = 0 (5.d.16)

are the required conditions.

The entire system of equations can be written in the following

form
Aw=bD (5.4.17)
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where the unknown vector w has entries given by

o (1)
oD

P{li

{1) (1)
8117 % 853

(1) (1)
811 " 833

(1)
812

P{!I

-

" (2)
512

while the coefficient matrix A of order 12 has row entries defined

by
1)

2)
3)
4)
5)

6)
7)

8)

9)

10)

Continuity of normal velocity, Equation (5.d.13)
Continuity of normal stress, Equation (5.c.2)
Boundary condition, Equation (5.d.15)

Boundary condition, Equation (5.d.16)

Difference equations, Shear conoid material 1,
Equation (5.d.9)

Difference equations, Shear conoid material 2
Difference equation, Dialatational conoid-material 1

with angle 91(1), (difference form of Equation (5.d.6)

Difference eq?ition, sonic conoid-material 1
with angle 0,y )

Difference equation, sonic conoid-material 2,
with angle 92(2)

Difference eq?ifion, sonic conoid-material 2,
with angle 92

«55=
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11) Difference equation, Particle path relationship for
material 1, Equation (5.d.12) in difference form

12) Difference equation, Particle path relationship for
material 2, Equation (5.d.12) in difference form

In the above listing the entries actually used in row 8 and
row 10 are the differences of the two difference equations defined

by integration along the angles 6{1), Oéi)for each of the
materials, i=1,2.

The above formulation has been programmed and is presently
undergoing testing. It is considered to be a prototype of methods
which may be used to predict interactions of two dissimilar mater-
ials undergoing elastic impact.
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VI. Results

In order to demonstrate the versatility of the algorithm,
two problems were considered. The first problem consists of a
penetrator composed of a 90/25 tungsten alloy impacting at
0.142 cm/usec upon a one inch thick RHA plate, The configuration
at moment of impact is shown in Figure (l1). The second problem,
shown in Figure (2), is a similar tungsten projectile but now
enclosed in a Maraging-300 steel sheath. The impact velocity is
the same as in the first problem. Each material in both problems
is assumed to have an equation of state which is given by
Tillotson:

Compressed states: P=P,

p. = (a+ J )Ep+A£+B£2 P >p
© E+1 <0<
Eonz 0< E E
where £ =n -1 ,n = D/Do

Expanded States: P=P,

~T(2 - 1) ~a(F - 1)2
bEp
p_ = aEp + + Ao -
_.._24.1
<
Euﬂ o ﬂﬁ
>
E Es
Intermediate States:
- [
. (E Es)Pe + (Es E)Pc i
= —
Es Es 0
< [ ]
Es <E Es

The constants used in the above equation of state for the
present calculation are given in the following table.
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The coefficient of viscosity K in Equation (4.a.7) was
taken to be 1.8, The two transformations (2.1) and (2.2), which
are presently coded inline rather than in a function subprogram
form, were used in each material. The constants for the trans-
formations applied to each material domain are given in the
accompanying table.

Transformation (2.1) Transformation (2.2)
r
L v I D q
90/25 =
Tungsten 17 1.75/16.5 1.75 Az 0
RHA 24 9/23.5 0.5 az”t 0
Maraging-300 17 1.75/16.5 1.75 az”t 0

The constants used in the transformations for the projectile

were chosen with szmax so that uniform spacing in r is achieved.

For the target, fine svacing in the region of impact is desired so
dr .
max

“"ne mesh (iAa, jAB), which was chosen such that 1 <i <I,
1l <j <J, is given in the following table for each of the domains.

I J 10-right g io-left
90/25
Tungsten 121 20 120 17 21
RHA 31 25 25 24 16
Maraging-300 61 20 60 17 11

Here io and jo represent respectively the initial o position

of the material right justified on the mesh and the initial maximum
height of the material in the B direction. The initial starting
value of io left justified is also shown. The minimum value of jo

is 1 for all domains,
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The final configuration after 30 microseconds for the un-
sheathed penetrator is shown in Figure 3. The letter P appears
at each mesh point when the material is at a stress level which
satisfies the yield condition. At such points the material be-
haves plastically. Figure 4 corresponds to the final state of
the sheathed penetrator at 30 microseconds. At this time there
is slightly less deformation of the nose of this penetrator com=-
pared to the unsheathed penetrator. Because of the velocity and
density ratio between the penetrator and target,the rod is not
significantly deformed during the penetration process except at
the nose where some blunting and mushrooming of the initial spheri-
cal shape takes place.

In both cases, Figures(3) and (4) we see that the rod has
completely penetrated the target and is emerging from the far face.
Since spall and other fracture mechanisms have not been incorpor-
ated into the present model, plugging is not accounted for; ob-
viously the back face of the target has stretched beyond that which
would occur for RHA.

Figure (5) compares the pressure history at the interface on
the axis of symmetry of the penetrator for both of the above prob-
lems, while Fiqgure (6) compares the pressure history in the target
for both problems. The d symbol is the two material curve while the
A is the three material curve. For this high velocity, the
pressure 1s continuous across the interface since the stress
ievel 1s on the order of 1/10 the pressure levels. Thus, on the
scale being plotted, both sets of curves, penetrator and target,
are nearly coincident. Figure (7) is a plot of the penetration
depth D vs time. Over the first 20u seconds the penetrator leading
edge is moving at an average speed of -.06 cm/usec. It is clear,
from this graph, that the speed is increasing since the target is
failing beyond this time. Similar behavior is exhibited for both
problems. At 30u sec., the sheath is still moving at -0.142 cm/usec.
as is the penetrator for approximately the last 90% of its length.
Hence the residual velocity, although not computed by integration
over the volume region of space defining the projectile is on the
order of >.9 initial velocity.

Computed stress levels in the sheath at this time are low.
The maximum pressure, at the interface near the leading edge, is
approximately one kilobar but on the average the pressure lies be-
tween one kilobar and one hundred bars. Maximum and average stress
levels are similar. The maximum pressure transmitted to the target
is somewhat larger for the sheathed rod impacting although the
pressure histories are similar. In both cases, the projectile re-
mains compressive near the leading edge out to 25 microseconds,

For the unsheathed penetrator problem, approximately 250 mesh
points were used in the targets and 2000 points in the penetrator.
This problem ran to 30 microseconds problem time in 2271 seconds on
a CDC 6600. For the problem with sheath the target and the pene-
trator have the same number of points as the first problem, while
the sheath contained 1000 mesh points. The computation time for
this problem is 2169 seconds.
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